
Technical Report 1134

Cooperative Interface Agents for Networked
Command, Control, and Communications
(CIANC³): Phase I Final Report

Scott D. Wood
Soar Technology, Inc.

April 2003

United States Army Research Institute
for the Behavioral and Social Sciences

 Approved for public release; distribution is unlimited

U.S. Army Research Institute
for the Behavioral and Social Sciences

A Directorate of the U.S. Total Army Personnel Command

ZITA M. SIMUTIS
 Director

Research accomplished under contract
for the Department of the Army

Soar Technology, Inc.

Technical Review by

Robert J. Pleban, ARI
Paul A. Durlach, ARI

NOTICES

DISTRIBUTION: Primary distribution of this Technical Report has been made by ARI.
Please address correspondence concerning distribution of reports to: U.S. Army
Research Institute for the Behavioral and Social Sciences, Attn: TAPC-ARI-PO, 5001
Eisenhower Ave., Alexandria, VA 22333-5600.

FINAL DISPOSITION: This Technical Report may be destroyed when it is no longer
needed. Please do not return it to the U.S. Army Research Institute for the Behavioral
and Social Sciences.

NOTE: The findings in this Technical Report are not to be construed as an official
Department of the Army position, unless so designated by other authorized documents.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO T ABOVE ADDRESS. HE
1. REPORT DATE (DD-MM-YYYY)
April 2003

2. REPORT TYPE
Final

3. DATES COVERED (From - To)
3/1/02 – 8/31/02

4. TITLE AND SUBTITLE

Cooperative Interface Agents for Networked Command, Control, and Communications
(CIANC3): Phase I Final Report

5a. CONTRACT NUMBER
DASW01-02-C-0019

 5b. GRANT NUMBER
0602785A

 5c. PROGRAM ELEMENT NUMBER
A790

6. AUTHOR(S)
Scott D. Wood (Soar Technology, Inc.)

5d. PROJECT NUMBER
211

 5e. TASK NUMBER

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER 20020301

Soar Technology, Inc
3600 Green Court, Suite 600
Ann Arbor, MI 48334

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Research Institute for the Behavioral and Social Sciences ARI
ATTN: TAPC-ARI-IK

5001 Eisenhower Avenue 11. SPONSOR/MONITOR’S REPORT
Alexandria, VA 22333-5600 NUMBER(S)
 Technical Report 1134
12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES
Contracting Officer’s Representative: Carl W. Lickteig

14. ABSTRACT
Report developed under a Small Business Innovation Research Program 2000.2 contract for topic A02-024. The research reported here
explored methods for effectively controlling FCS units containing mixed human and robotic elements. The objective was to determine
whether an agent framework built around three specified agent types (Tasking, Coordinating, and Monitoring) could be constructed to
add an intelligent abstraction layer between human commanders and battlefield elements. The focus was to identify human-system
interaction issues, design potential solutions, and create software that supports the commander’s tasks and mitigates inherent human
performance limitations. A prototype interface agent architecture was designed, and a framework was implemented. Interface agents
were created to perform in a simple, simulated battle scenario. The work conducted during Phase I lays the foundation for a Phase II plan
to create more realistic scenarios and test the utility of interface agents in a variety of experimental settings.

15. SUBJECT TERMS
Training, Interface Agents, Intelligent Agents, Command and Control, Future Combat Systems

16. SECURITY CLASSIFICATION OF:

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Carl W. Lickteig

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Unlimited

19b. TELEPHONE NUMBER (include
area code)
502–624-2613

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Technical Report 1134

COOPERATIVE INTERFACE AGENTS FOR NETWORKED
COMMAND CONTROL, AND COMMUNICATIONS (CIANC3):

PHASE I FINAL REPORT

Scott D. Wood
Soar Technology, Inc.

Armored Forces Research Unit
Barbara A. Black, Chief

U.S. Army Research Institute for the Behavioral and Social Sciences

5001 Eisenhower Avenue, Alexandria, Virginia 22333-5600

February 2003

Army Project Number Personnel Performance and
2O262785A790 Training Technology

Approved for public release; distribution unlimited.

FOREWORD

As Army weapons systems become increasingly complex, we must ensure that training
can keep pace. This is a primary mission of the U.S. Army Research Institute for the Behavioral
and Social Sciences (ARI). Are there ways of improving trainability by mitigating inherent
complexities? One promising technique for doing this is through highly-usable intelligent user
interfaces.

This Phase I Small Business Innovation Research Program (SBIR) effort explored the

feasibility of interface agents for simplifying the command and control of multiple unmanned
vehicles. The research goal was to design a suitable architecture for exploring and creating
interface agents compatible with the Army’s Command, Control, Communication, Computer,
Intelligence, Surveillance, and Reconnaissance (C4ISR) systems. This architecture was
implemented and tested in simulation using a simple battle scenario. This initial test of technical
feasibility allows for further research to determine how such interface agents could be used,
whether they can truly reduce operator workload and improve performance, and the parameters
of such usage within the context of robotic command and control. Determining the factors
relevant to intelligent task support is critical for the Future Combat Systems program if it is to
deliver on its promise of reducing manpower and dramatically improving the Army’s force
capabilities.

This research was part of ARI’s Future Battlefield Conditions (FBC) team efforts to

enhance soldier preparedness through development of training and evaluation methods to meet
future battlefield conditions. This report represents efforts for Work Package 211, Techniques
and Tools for C4ISR Training of Commanders and Staffs in Future Combat Systems Units
(FUTURETRAIN). Results of this effort and plans for the Phase II effort were reviewed by
representatives from the Army’s SBIR program. As a result of the Phase I success, the Phase II
effort was awarded, and an interface agent system should be available for commercial
application by January 2005.

 KATHLEEN A. QUINKERT
 Acting Technical Director

ACKNOWLEDGEMENTS

This report describes work performed under a Small Business Innovation Research
Program 2000.2 contract for topic A02-024. The project goal was to explore methods for
effectively controlling FCS units containing mixed human and robotic elements with a focus on
training implications. The success of this project reflects the efforts of many individuals.

 I would like to thank the team at U.S. Army Research Institute for the Behavioral and
Social Sciences (ARI) Fort Knox Field Unit. In particular, I would like to thank Dr. Carl
Lickteig for patiently guiding us through the process, sharing his knowledge and expertise, and
helping to make useful connections to other collaborators. I would also like to thank Mr. Scott
Shadrick for using his unique blend of psychological and technical skills to focus our efforts in
both areas.

 I would also like to thank Dr. Robert Bialczak and Mr. Jon Nida of Technology Services
Associates for their considerable support with their Operator Control Unit (OCU) for robotic
control. Their efforts allowed us to start with a more realistic interface environment; one that is
used to control both actual and simulated robotic entities. I also thank Dr. Russell Vane of
Veridian Systems for his domain expertise in Armored Cavalry operations.

 Finally, I would like to thank the Soar Technology CIANC3 team, Mr. Jonathon Beard,
Dr. Richard Frederiksen, and Mr. Jack Zaientz, for their scientific expertise, creative abilities,
and professional standards. Dr. Marcus Huber of Intelligent Reasoning Systems was
instrumental in developing a communication architecture and clearly defining a workable
scenario. I would also like to thank the others at Soar Technology for their considerable support.

COOPERATIVE INTERFACE AGENTS FOR NETWORKED COMMAND, CONTROL,
AND COMMUNICATIONS (CIANC3): PHASE I FINAL REPORT

EXECUTIVE SUMMARY

Research Requirement:

The vision of the Army’s Future Combat Systems (FCS) includes the use of mixed teams
of human and robotic forces on a dynamic and rapidly changing battlefield. Implementing the
vision will include a shift from manual, human control of weapons systems to semi- and fully
autonomous control over mixed systems of humans and non-human entities. It will also entail an
overall force reduction that will require multiple entities to be controlled by individual team
leaders and multiple teams to be led by higher-echelon commanders. To accomplish this,
systems will have to be designed to require less human interaction and greater robotic autonomy.
Successful implementation of this shift will require autonomous and semi-autonomous robotic
forces and a command and control infrastructure that will allow human, robotic, and mixed
teams to be controlled quickly and easily. One key to this will be the degree to which teams and
individual robots are autonomous. A second is whether the commander’s human-machine
interface is designed such that the commander is not overloaded with constant system interaction
allowing him or her to focus on the mission. The focus of this project has been to identify the
human-interface issues, design potential solutions and create software that supports the
commander’s tasks and mitigates human performance limitations in the context of robotic
command and control.

The overall research goals for this project were to determine whether a specific class of

software agent, autonomous intelligent interface agents, could be created to reduce the
complexities inherent in controlling multiple unmanned vehicles. Furthermore, if such a system
could be built, how could it best be used and would it fundamentally improve operator
performance. Finally, if such a system were useful, how could future warfighters be effectively
trained to control multiple robots.

The technical objective for Phase I of this project was to demonstrate the feasibility of a

cooperative multi-agent system for control of battlefield robots. That is, the project was to
determine whether an agent framework built around the three specified agent types, tasking,
coordinating, and monitoring, could be constructed to add an intelligent abstraction layer
between human military commanders and robotic battlefield entities.

Procedure:

Under Phase I of this Small Business Innovative Research contract, we researched
methods for effectively controlling FCS units containing mixed human and robotic elements.
Our objective was to determine whether an agent framework built around three specified agent
types (Tasking, Coordinating, and Monitoring) could be constructed to add an intelligent
abstraction layer between human commanders and battlefield elements. The focus was to

identify human-system interaction issues, design potential solutions, and create software that
supports the commander’s tasks and mitigates inherent human performance limitations.

During the initial phase of this project we progressed in several areas. Major

accomplishments of Phase I included:

�� A working scenario was defined on which to determine project feasibility.
�� Architectural tradeoffs were discussed culminating in a working system and

communication architecture.
�� Necessary inter-agent communications protocols to perform the scenario were

designed.
�� Soar was integrated into the Operator Control Unit (OCU)/OneSAF TestBed (OTB)

code base.
�� A Soar-language prototype multi-agent C3I support system was developed and tested.
�� A prototype user interface for the multi-agent system was designed and implemented.

Findings:

The agent and communication system designs were successfully implemented in a
simulation environment, the Operator Control Unit (OCU). A scenario was created to test the
system using a simple combination of a sensor-vehicle (UAV) and a shooter-vehicle (UGV).
The UGV took the tasking to seek and destroy a suspected enemy. The UGV tasked a UAV to
locate and acquire the target. The UAV located the target and transmitted the coordinates to the
UGV, which then confirmed with the human operator before firing on, and destroying the target.

The scenario was simple enough to test and demonstrate the capabilities of the interface-

agent architecture, but it was not complex enough to demonstrate any real utility to robotic
controllers. In addition, the Tasking agent accomplished most of the background work. A more
complex scenario will place more demands on the Coordinating and Monitoring agents, driving
their further elaboration.

In summary, Phase I successfully demonstrated the technical feasibility of interface

agents for robotic command and control. It also provided the necessary infrastructure and
techniques necessary to rapidly explore much more of the problem space.

Utilization of Findings:

Phase II will expand the target scenario by implementing some portion of an Army
approved FCS scenario. Phase II will further develop the agent and communication
architectures, the agents, domain-specific behaviors, and the user interface. Phase II will
integrate speech and voice recognition into the OCU and instrument it to collect human and
system data. Phase II will identify and explore a variety of human factors involved in robotic C2
and conduct task analyses as necessary. At appropriate points in the project, the system will be
evaluated by civilian and military personnel. By the end of Phase II, January 2005, the Army
and commercial sectors should benefit from an interface architecture that helps manage robotic
systems and reduce users’ knowledge and training requirements.

 COOPERATIVE INTERFACE AGENTS FOR NETWORKED COMMAND, CONTROL,
AND COMMUNICATIONS (CIANC3): PHASE I FINAL REPORT

CONTENTS

Page

PHASE 1.. 1

 Identification and Significance of the Problem .. 1

 Background .. 2

 Robotic Battlefield Entities... 2
 Human-Machine Interaction and Supervisory Control... 3
 Agents and Multi-Agent Systems ... 3
 Interface Agents .. 6

 Phase I Technical Objectives and Approach ... 6

 The Vision: Cooperative Teams of Soar Interface Agents .. 6
 Technical Objectives... 7
 Approach... 7
 CIANC3 Agent Roles and Responsibilities... 9
 System Implications.. 11
 Usability and Training Implications ... 12

 Phase I System Environment .. 13

 Integration Environment: Operator Control Unit / OneSAF TestBed 13
 Agent Environment: The Soar Cognitive Architecture .. 14
 Agent Communications: FIPA.. 15
 User Interface Development: Tcl.. 16

 Phase I Activities and Accomplishments... 16

 Conceptual FCS Vignette .. 17
 Phase I Scenario... 18
 System and Communication Architecture ... 19
 Inter-Agent Communications for the Scenario .. 22
 Soar-OCU/OTB Integration... 23
 Soar Prototype Agent... 23
 User Interface Prototype .. 23
 CIANC Agent Behavior in the NLOS Bombardment Mission 25
 Summary of Phase I Results .. 27

CONTENTS (Continued)

 Page

PHASE II ... 28

Phase II System Design ... 28

 Infrastructure Design ... 28
 Design Concept.. 28
 The Messaging Infrastructure .. 29
 Multi-Agent Design ... 31

Phase II Work Plan .. 32

 Research HSI, Scenarios, Behaviors.. 33
 Develop GUI.. 33
 Design and Conduct System and Human Tests ... 34
 Develop Testing Environment ... 34
 Research Agent Architecture and Communications .. 35
 Develop Agent Architecture and Communications ... 35
 System Development and Integration.. 35
 Develop Agent Behaviors .. 35

PHASE III TRANSITIONAL PLAN .. 35

Phase III Commercialization Strategy ... 35

REFERENCES .. 39

APPENDIX A: Agent Message Types ... A-1

APPENDIX B: Agent Communications UML Sequence Diagram.. B-1

LIST OF TABLES

Table 1. Scenario phases and entity responsibilities... 18

LIST OF FIGURES

Figure 1. OTB movement dialog box ... 2
Figure 2. CIANC3 Conceptual Overview ... 8
Figure 3. Phase I Scenario Narrative Map .. 17
Figure 4. Phase I Design Option I... 20
Figure 5. Phase I Design Option II ... 20
Figure 6. Phase I Design Option III .. 21

CONTENTS (Continued)

 Page

Figure 7. Phase I Design Option IV.. 22
Figure 8. Inter-agent communication diagram.. 23
Figure 9. The Task Definition Pane of the user interface prototype... 24
Figure 10. The Task Monitoring Pane of the user interface prototype..................................... 25
Figure 11. Messaging sequence diagram.. 30
Figure 12. Agent registration and status messaging ... 31
Figure 13. Experimental Environment.. 34

COOPERATIVE INTERFACE AGENTS FOR NETWORKED COMMAND, CONTROL,
AND COMMUNICATIONS (CIANC3): PHASE I FINAL REPORT

Phase I

Identification and Significance of the Problem

The vision of the future for armored and mechanized military structure, as spelled out by
(Defense Advanced Research Projects Agency, 2001), includes the use of mixed teams of human
and robotic forces on a dynamic and rapidly changing battlefield. Implementing the vision will
include a shift from complete human control of weapons systems to mixed systems of humans
and non-human entities. It will also entail an overall force reduction that will require multiple
entities to be controlled by individual team leaders and multiple teams to be lead by higher-
echelon commanders. To accomplish this, systems will have to be designed to require less
human interaction and greater robotic autonomy. Successful implementation of this shift will
require autonomous and semi-autonomous robotic forces and a command and control
infrastructure that will allow human, robotic, and mixed teams to be controlled quickly and
easily. Two keys to this will be the degree to which teams and individual robots are
autonomous, and whether the commander’s human-machine interface is designed such that the
commander has superior awareness of the situation. Heightened awareness will afford the
commander the ability to rapidly create and execute battle plans. The focus of this project has
been to identify the human-interface issues, design potential solutions and create software that
supports the commander’s tasks and mitigates human performance limitations.

To illustrate the limitations of current control technologies, consider how OneSAF Test

bed (OTB) users currently specify the behavior of simulated semi-autonomous entities. Figure 1
shows a typical OTB screen for specifying the travel orders for a simulated battlefield entity.
There are 15 main sections of information for input. Even if the user were able to complete each
section in 4 seconds it would require at least 1 minute to complete this screen. Firing orders and
other necessary plans and contingencies would take additional time. While this level of
performance may be acceptable for simulation purposes, it is clearly not acceptable for
battlefield performance, especially considering that such steps might be necessary for each
vehicle. The main point is that time to respond to various battlefield events (such as a movement
order) is likely to be much longer than time available. If instead, the commander had given the
order to a human staff assistant, the assistant would be able to determine many of the details
necessary to specify the commander’s intent. For example, unit type, readiness state, enemy
proximity and disposition, and mission type could be used to infer much of the information
required by the OTB dialog box. Since much of the information required can be determined
from unit standard operating procedure (SOP) or can be inferred by a subordinate from the
mission profile, this type of command and control problem lends itself to expert system solutions
and/or other forms of performance enhancing technologies.

 1

Figure 1. OTB movement dialog box. To specify travel orders for a simulated entity, the user
completes the fields. With 15 main sections, completing all the necessary data is too slow for
battlefield performance.

Military commanders will face similar command and control issues when leading mixed

units of live and robotic entities. The problem is that current unmanned systems require too
much human control to meet the goal of one controller per multiple battlefield entities. For
example, the Predator unmanned aerial vehicle requires a minimum of three people to operate it,
one officer and two senior non-commissioned officers. In order to meet the force transformation
goals, the information and interaction needs of future robotic systems will need to be reduced to
allow multiple robots to be controlled by a single human. This goal can only be realized through
increased robotic autonomy and improved human-machine interaction. We propose to build on
our Phase I efforts to further develop an innovative system of cooperative intelligent interface
agents for network command, control, and communication.

Background

Robotic Battlefield Entities

An overall goal of the FCS program is to transform the current military structure,
operations, strategies and tactics to create a force that is more responsive, deployable, agile,
versatile, lethal, survivable, and sustainable. One implementation strategy to achieve this goal is
to split the roles of battlefield entities to create smaller, more specialized platforms that will
operate cooperatively in a much more effective manner than currently possible. This will
include at least the following battlefield platforms: manned vehicles, direct fire vehicles, indirect
fire, beyond-line of sight (BLOS) vehicles, sensor vehicles, unmanned aerial vehicles, and other

 2

layered sensors such as satellites (c.f. Van Fosson, 2001; and Defense Advanced Research
Projects Agency, 2000). Other research is addressing low-level issues regarding autonomous
robot control, such as cooperative path planning, team selection and tactics, and dealing with
uncertainty, e.g. the MICA project (Defense Advanced Research Projects Agency BAA #01-029,
2001). The present work will develop software techniques and technologies that will allow
human commanders to control the robot teams in a similar manner to how they command human
teams, that is, in the language of the military, not the language of robotic control theory. In
addition, it will address command and control for higher echelons and for cooperative actions
across echelons.

Human-Machine Interaction and Supervisory Control

The overall goal of the human-machine interface design for this project is to maximize
human performance by creating a system that allows users to perform military tasks without
focusing on the computer system used. This requires a system that is efficient to use, easy to
learn, easy to remember, and error-tolerant. Two approaches that have been taken to improve
usability are direct-manipulation and intelligent interfaces. Direct manipulation interfaces stress
the accurate visualization of large amounts of data (Shneiderman & Maes, 1997). These
interfaces also enable users to directly manipulate and select data by pointing, and other rapid,
incremental, and reversible actions that provide immediate feedback. One technique for
maximizing usability is to automate mundane and time-consuming tasks with software. Previous
efforts at automating system tasks have achieved mixed results often because supervisory control
issues (Leveson, 1995; Sheridan, 2000) were not adequately addressed. Effectively automating
system functions requires a delicate balance of reducing tedious tasks and overall operator
workload, and maintaining adequate human control (both real and perceived) and vigilance. For
example, users will become complacent in monitoring-only tasks, such as monitoring status
gauges or security cameras, and become more prone to errors. They need to be kept engaged and
they need to maintain their skills for times when automated systems are inadequate. Task-
analytic techniques can be used to address the supervisory control problem, enabling designs that
will include the right mix of human and automated control. One way of implementing
supervisory control software is through software interface agents.

Agents and Multi-Agent Systems

The challenge of developing complex agent-based systems is to first determine the most
appropriate representation and reasoning framework for individual agents and then to determine
how the many agents will communicate and cooperate. Individual agents can vary greatly in the
expressiveness and power of their knowledge, procedural representations, reasoning algorithms,
and capabilities. Multi-agent systems can vary widely in the manner in which the agents are
organized, the language and protocols used to interact, and the coordination and problem solving
paradigms they utilize to complete their tasks. This section will clarify what is meant by an
“intelligent agent,” discuss agent frameworks, and introduce a number of issues inherent in all
multi-agent systems.

 3

What do we mean by the term “intelligent agent?” An informal, intuitive definition is:
“intelligent” - having knowledge/expertise, and “agent” - a software-based process that can do a
task for someone or something else (e.g., a travel agent).

The following is a more formal, yet still quite weak, definition of agents that is adapted

from (Wooldridge, 2000):

Agent - a software-based computer system that has the following properties:

�� Autonomy - acts without the direct intervention of humans or others and with some
 control over their actions and internal state.
�� Social ability - interacts with other agents and possibly humans.
�� Reactivity - responds in a timely manner to changes in the environment.
�� Pro-activeness - exhibits goal-directed behavior.

A stronger notion of agency is based on the Beliefs-Desires-Intents (BDI) framework

(Wooldridge, 2000). It is widely held by the Artificial Intelligence (AI) community that, in
addition to the weak, formal properties, the software process must conceptually or explicitly
embody humanistic characteristics such as:

�� Knowledge and Beliefs - facts or belief about environment (including other agents) or

internal state.
�� Desires and Goals - motivations for acting.
�� Intentions - commitments to courses of action based upon motivations.
�� Obligations - commitments to other agents.
�� Rationality - actions are purposeful toward achievement of goals.

The agent research and development for this effort, and the specific expertise of Soar

Technology and Intelligent Reasoning Systems, focuses primarily on building agents that
embody this stronger notion of agency.

There are many “agent” architectures such as Aglets and JAVA Agent Template (JAT)

from IBM, Agent Tcl (Gray, Kotz, Cybenko & Rus, 1997) from Dartmouth, and Agents for
Remote Action (ARA) (Peine & Stolpmann, 1997) from the University of Kaiserslautern that
have little or no explicit representations of any of the mentalistic attributes of beliefs, intentions,
capabilities, or even goals (often argued to be the key feature of agency). Furthermore,
programmers encode the behavior of these agents almost completely through low-level hard
coding. Each of these agents provides specialized functionality in some focus area (e.g., ARA
and Agent Tcl are specialized to provide mobility capabilities) but do not otherwise provide what
we consider a complete reasoning architecture.

Agent architectures such as Soar (Laird, Newell & Rosenbloom, 1987) and AOP-based

(Agent-Oriented Programming) (Shoham, 1993) architectures such as Agent-0 (Shoham, 1991),
LALO, and PLACA (Thomas, 1995) all provide significantly more complete representation and
reasoning frameworks than those mentioned in the preceding paragraph. Soar implements a

 4

unified theory of cognition (Newell, 1990) and provides a wide range of desired agent
architecture capabilities, including integrated execution, means-ends planning, meta-level
reasoning, and learning. The AOP-based architectures provide explicit internal representations
of mentalistic concepts such as beliefs and commitments but they emphasize social interaction
capabilities over individual capabilities (even though PLACA does extend the AOP paradigm to
include generative planning capabilities).

In addition to these primarily monolithic agent architectures are a number of multi-level

agent architectures such as Touring Machines (Ferguson, 1992), Atlantis (Gat, 1992), and
InteRRap (Muller & Pischel, 1994). Agent architectures of this style vary widely in their
theoretical foundation, internal representations, architectural components, and particular
emphasis on specific representational or behavioral issues or application domain. One common
problem with multi-layer architectures is that they require a specialized programming language
for each layer (e.g., reactive layer language, scheduling layer language, planning layer language,
coordination layer language). None of these architectures provides as mature or cohesive a
theoretical basis as that provided by the BDI theory.

There are many challenging issues that must be addressed when developing multi-agent

systems. This includes how the agents are organized and what role the agents play within the
organization (Birmingham, D’Ambrosio, Darr & Durfee, 1994; Fox, 1988). Within the FCS
system, much of the agents’ organization will be dictated by military doctrine. However, with
multiple agents associated with each unmanned vehicle operator and the possibility of combat
losses, the static and dynamic organization and role determination (Corkill, 1982; So & Durfee,
1994; So & Durfee, 1997) will be important issues to address.

Another important issue in multi-agent systems is determining what communication

language semantics and syntax the agents will use at both the performative and content level
(FIPA: Foundation for Intelligent Physical Agents, 2000; Labrou, 1996; Cohen & Levesque,
1990; Huber, 1999). The performative level is associated with the intention of the message, such
as whether it is a directive (command, question, or request), an assertive (information/knowledge
passing), a commissive (commitment forming), etc. (Searle, 1970). The content level is
associated with the specifics of the communication, such as the task being requested or the
information being passed, and is almost always domain specific.

Entities within organizations tend to interact with each other in regular, standard patterns

and this holds true for intelligent agents as well. These interaction patterns simplify agent
reasoning by constraining agent behavior and facilitate creation of expectations and standard
behavior models of other agents. Capturing these patterns, commonly called conversation
policies or interaction protocols (Bradshaw, Dutfield, Benoit & Wooley, 1997; FIPA, 2000;
Kumar, Cohen & McGee, 2001; Labrou & Finin, 1997), is required in any complex multi-agent
environment and needs to reflect, for example, any authority relationships that exist between
agents (John & Kieras, 1996).

The manner in which the agents work together to complete their tasks is crucial to the

agents’ performance in any domain, and has been the topic of a great deal of research. There are
many factors involved with determining the problem-solving paradigm of the multi-agent

 5

system. Just a few issues include whether problem solving is done in a centralized or
decentralized manner (Fox, 1988; Durfee, Kenny & Kluge, 1998), whether tasks are distributed
or can be handled by a single agent (Gasser & Hill, 1990), the level of robustness and fault
tolerance required in the domain (Kumar & Cohen, 2000; Rosenschein, 1985), the level of
uncertainty and rate of change in the environment (Fox, 1979), whether a static problem solving
scheme will be used or whether the problem solving scheme can be dynamically changed
(Decker & Lesser, 1995; Rosenschein, 1985).

Interface Agents

Interface agents (Laurel, 1991) are a specific form of agents designed to reduce the
complexity of human-system interaction. Such agents can take the form of relatively simple
agents for performing single, well-defined tasks such as filtering mail, or they can be fairly
complex for more complicated tasks such as seeking out useful information or websites
(Lieberman, 1997). Fundamentally, interface agents represent an additional, simplifying layer of
abstraction between a user and a computer system. While some agents operate solely in the
background, interface agents are designed as user interface elements that can directly assist users
with their tasks. This can include assistance with input tasks that facilitate the specification of
complex commands to decrease task execution time and improve accuracy. Interface agents can
also assist with information output, interpreting raw data or filtering necessary information from
non-relevant data.

A weakness of some of the previous work on intelligent interface agents is that human

operators needed a significant amount of training and they had to think in terms dictated by the
software agents. A goal of intelligent interface design is to make the interface invisible (Maes,
1994). This is not to say that interface elements can ever fully disappear, but rather that the
translation between the user’s mental model of the task and the computer’s model for the task is
minimized. This idea is a core tenet of usability: The user should be able to focus on the
primary task, and not the technology used to accomplish that task. One way of approaching this
is by merging software-agent technology with proven direct manipulation techniques
(Shneiderman & Maes, 1997).

Phase I Technical Objectives and Approach

The Vision: Cooperative Teams of Soar Interface Agents

Interface agents were constructed using production rules in the Soar Cognitive
Architecture. An agent communications protocol was developed using FIPA as the language
basis. In general, agents were designed such that declarative information, such as weapon
characteristics, are stored in data files so that it can easily be modified. Procedural knowledge,
such as tactical heuristics, was encoded using productions. The procedural knowledge was
modularized within Soar to allow for maximal reuse of all encoded knowledge.

Each of the agent types was also modularized according to the roles they play. Tasking

agents are designed to incorporate reasoning about order types, weapon types, enemy weapon
types, and other necessary information. Coordinating agents include knowledge of

 6

communication formats and procedures, and heuristics for coordinating with other units.
Monitoring agents include knowledge of event types, how to prioritize them, how to filter them,
etc. In addition, there is also the need for a meta-layer of agent knowledge that specifies rules
for inter-agent communication.

Technical Objectives

The technical objectives for this SBIR are to demonstrate the feasibility of a CIANC3-like
system for control of battlefield robots. That is, the project will determine whether an agent
framework built around the three specified agent types can be constructed to add an intelligent
abstraction layer between human military commanders and robotic battlefield entities. Phase I
demonstrated feasibility on a technical level. Phase II will test whether such a system will
actually benefit FCS commanders. There are many issues that will not be specifically addressed,
such as, what are the best interaction techniques for optimal object selection, or how best can this
system be integrated into the military command structure. The technical objectives of this
project are:

1. Determine human information needs for controlling mixed human and robotic teams.
2. Determine appropriate levels of automation for human tasks that will reduce cognitive

workload yet maintain sufficient human control.
3. Determine suitable high-level architecture for interface agent organization and develop

inter-agent interaction protocol.
4. Develop usable human interface to software agents that will demonstrate agent

interactions, demonstrate abstract-to-concrete command translation, and allow testing of
target scenario.

5. Determine scalability of system and develop more complex scenario to demonstrate these
capabilities.

6. Further demonstrate the feasibility of the concept and explore real-world issues by
integrating the prototype into a robotic control and simulation system.

7. Test the system for usability, performance, and using a variety of engineering and
psychological methods.

Approach

The approach we have taken to achieve the technical objectives is to create a framework
of cooperative interface agents for networked command, control, and communication. The
initial goal of performance-enhancing technologies for command and control should be to start
with the current roles found in current command staffs to augment such activities and eventually
move further, providing real-time situation awareness and decision support beyond what is
humanly possible. Command staffs commonly provide five basic functions to commanders in
support of reconnaissance, security, offensive, and defensive operations (c.f., FM 17-95):

�� Provide timely and accurate information.
�� Anticipate requirements and prepare estimates.
�� Determine courses of action and make recommendations.

 7

�� Prepare plans and orders.
�� Supervise execution of decisions.

This project demonstrates the feasibility of creating a suite of interface agents that can

provide functionality currently provided by command staffs. The Command and Control
Hierarchy, illustrated in Figure 2, shows how intelligent agents can provide a layer of abstraction
between command echelons as well as between human controllers and robotic control systems.
Special-purpose agents are encapsulated into a meta-level agent to facilitate internal agent
communication and information sharing. The interface agents control the flow and form of
much of the information to be displayed to the human operator in a mixed-initiative dialog. The
human operator uses direct manipulation techniques to interact with the agents. If successful, the
human operator will not be aware of the underlying agent technology or the separation of agent
roles.

The Command and Control Hierarchy functions are divided between three classes of

agents: tasking, monitoring, and coordinating. Although other configurations are possible, the
basic roles and responsibilities required of the interface agents will remain. In addition, it is
assumed that interface agents will have access to, and be integrated tightly with, other battlefield
information and decision-support systems. Regardless of the type of digitized services that will
become available to battlefield commanders, the need for rapid tasking, coordinating, and
monitoring of operations will remain. These agent classes are discussed below with examples of
how they might be used.

Figure 2. CIANC3 Conceptual Overview.

 8

The FCS vision of future armored and mechanized military structure includes use of
mixed teams of human and robotic forces on a dynamic, rapidly changing battlefield. This will
require an overall force reduction with multiple entities controlled by individual team leaders and
multiple teams to be lead by higher-echelon commanders. To accomplish this, systems will have
to be designed to require less human interaction and greater robotic autonomy. Successful
implementation of this shift will require autonomous and semi-autonomous robotic forces and a
command and control infrastructure that will allow both human and robotic-teams to be
controlled quickly and easily. Key to this will be the degree to which teams and individual
robots are autonomous, and whether the commander’s human-machine interface is designed so
the commander has superior control and awareness of the situation. The initial phase of this
effort addressed the issue of whether an agent framework built around the three specified agent
types (Tasking, Coordinating, Monitoring) could be constructed to add an intelligent abstraction
layer between human military commanders and robotic battlefield entities. The focus was to
identify the human-interface issues, design potential solutions and create software that supports
the commander’s tasks and mitigates human performance limitations.

CIANC3 Agent Roles and Responsibilities

Tasking Agents. Tasking agents will be used to assist commanders and controllers to
rapidly issue battlefield commands. They are to reason about the commander’s intent, standard
operating procedures, unit capabilities, operating environment and enemy disposition to present
the commander with a reasonable operation plan. Where ambiguity exists, tasking agents should
engage the commander in dialog to clarify intentions or will present several options. After
customizing the resulting plan as necessary, the commander can then issue the order. The
tasking agent will then translate the order into the proper command sequences for next command
layer. These sequences range from dialog completion information to atomic-level robotic
commands, or relatively high-level commands that will be further processed by a cooperative
planning system.

For example, a commander may wish to task a deployed company to attack a target. To

do this he could select the company or individual platoon elements with a light pen (or other
suitable input device) and drag them to the designated target area using the desired path and
direction of attack. The tasking agent would then query the commander as to the mission type
who in turn would select Attack. The agent would then reason about the current posture of the
company, assets of the platoon elements, terrain, weather, and enemy, and propose a mission
profile. An order would then be prepared specifying the commander’s intent; movement orders
indicating lead and screen elements, and other information normally included in an operation
plan. After reviewing and verifying the plan, the commander would confirm the order; the
tasking agent would translate the order (for robotic forces) and send out the plan. After
confirming receipt of the order, the system would then monitor the plan’s progress and update
the commander as necessary.

It is not enough that the system simply automate the commander’s tasks. Users of the

system must be aware of and feel in control of the situation at all times. Otherwise, they will
either lose trust in the system, reverting to manual control, or place too much faith in it,
becoming complacent and jeopardizing lives. After orders have been issued, the plans should be

 9

visible to the commander so that they can be inspected, monitored, critiqued, and modified. This
mix of interface agent assistance and direct manipulation is essential to achieving the right mix
of automated and manual control. Examples of other roles tasking agents might play include:

�� Tasking UAVs for targeting.
�� Automatic weapon selection for known target types.
�� Automatically modifying defensive posture in the event of an ambush.
�� Modifying weapons usage (rate of fire, ammo selection).
�� Modifying alert rules for when an autonomous agent should seek guidance.
�� Facilitate any direct manipulation of by providing context-sensitive assistance such as

assigning targeting priorities.

Coordinating Agents. Coordinating agents are responsible for facilitating communication
and coordination across and within echelons within the command hierarchy. While command
hierarchies will certainly continue, operational hierarchies are likely to become more network-
centric, blurring the distinction between separate commands. Units in one command may
cooperate with a second command element one minute and a third the next. Such dynamic
operational shifts will only be possible by automating much of the communication and
coordination that must occur in such situations. Tasks such as determining radio frequencies,
call signs, unit designations, chain-of-command, identify friend foe (IFF) and communications
security are all time-consuming but necessary issues with which coordinating agents will be able
to assist.

For example, coordinating agents can increase force lethality in cooperative engagements

by minimizing duplication of effort, maximizing target coverage, synchronizing time of attack,
or massing fire on a single target. They can also be responsible for maintaining a common
operational picture (and thus, situational awareness) by updating higher and lower echelons on
the current situation, plans, enemy intentions, and battle damage assessment. As with tasking
agents, it is important that agent actions, processes, and results be visible to the user. The
commander must be able to verify that his intentions are being accurately implemented, and he
must be able to intercede when necessary.

Another example where coordination is critical is rapidly responding to fast-moving or

stealthy targets. Coordinating air defenses and sensor systems faster than humanly possible is
often necessary for effectively countering such attacks. In such situations, the coordination agent
might work directly with monitoring and tasking agents to rapidly eliminate the threat. Other
roles that might be played by coordination agents include:

�� Setting up direct sensor to shooter communications across commands.
�� Setting up other cross-command tasking such as indirect fire support.
�� Facilitating teleconferencing.
�� Reestablishing communications and integrating orphaned units.
�� Communicating routes, plans, intentions, progress and other explicit and tacit

information.
�� Sharing incomplete sensor information (such as vectors to fire source) to higher echelons.
�� Facilitating direct control of vehicles (e.g., tele-operation) in critical situations.

 10

Monitoring Agents. Monitoring agents are responsible for assisting the commander in
maintaining an accurate awareness of the current situation (situational awareness) at all times.
The amount of information available to battlefield commanders will continue to increase to the
point of informational overload. The main role of monitoring agents will be to prevent
information overload by fusing, filtering, and prioritizing raw data, and transforming that data
into information that the commander can use in the context of the current situation. For example,
different units may report directional vectors for the source of sniper fire. The monitoring agent
could use this vector data to triangulate the sniper’s position and recommend through the tasking
agent that indirect suppressing fire be called on that location. Another possible data fusion role
could be more proactive. Monitoring agents could use templates such as intelligence formats
(e.g., SALUTE reports, which specify the Size, Activity, Location, Unit, Time, and Equipment
of an observed enemy) to task sensors or prompt humans for missing fields.

Monitoring agents should also filter information, especially when the commander is

engaged in critical tasks, to minimize distractions. For example, if the commander is busy
responding to an ambush with one unit, he probably doesn’t care at the time that another unit’s
status is “Okay” and has not changed. Such routine status reports should be stored for future
reference, but kept in the background so as to not interfere with more important tasks. Likewise,
such information can be prioritized by criticality or by relevance to current commander tasks.
For instance, message traffic and information flow may increase dramatically during a firefight.
Where loss of life or equipment is imminent, relevant information that might prevent or mitigate
the situation could be made more salient for the commander (e.g., by color or ordering in a
message list). Other monitoring agent tasks might include:

�� Automatically updating and synchronizing COP (common operational picture) databases.
�� Presenting appropriate data visually, such as unit location, direction, supply levels, and

damage status.
�� Providing all messages relating to a single friendly or enemy unit to help build a broader

picture from single events.
�� Represent visually direct communication lines between shooters and sensors.
�� Monitoring health and stress levels of human subordinates.

System Implications

It is important that this interface technology be developed modularly, creating cohesive,
loosely coupled entities that can be easily modified, adapted, and reconfigured as doctrine,
technology, and missions evolve. It should also be assumed that the target agent organization
described here will change to include other classes of interface agents. The agent architecture,
therefore, must accommodate such change. For example, a display agent could be used to
control all information presented to the user. An executive agent may be useful for coordinating
the control and communication within a collection of agents (e.g., within the meta-agent). Other
agent roles that might be separately developed include:

�� Deriving commanders current task from recent actions.
�� Deriving enemy intent based on recent enemy actions.
�� Red-teaming plans.

 11

�� Routine scheduling of communications, supply, and duty rotations.

In addition, the missions, roles, responsibilities and information requirements will be
different for each echelon in which this technology is employed. Doctrine will also change with
coming technological advances. It is important that the resulting system be flexible and modular
enough to rapidly adapt to new procedures and protocols. For example, the agent system should
be constructed to allow different sets of expert knowledge to be easily constructed and integrated
into the agents. Tools for doing this should be included in later phases of the project.

Usability and Training Implications

To determine the proper tasks to automate, the necessary information requirements, and
how to optimize human procedures, designers must gain a deep understanding of the user’s task.
Task analysis (Kirwan & Ainsworth, 1992) is used to capture, understand, and improve existing
human procedures, and how human tasks can best be improved with technology. In addition, a
task analysis will spell out a system’s training requirements, specify the steps and ordering of
training materials, and provide the basis for task-based help. Developing cognitive user models
will assist in creating agents that help rather than hinder human performance. Because this will
be an evolving system, maintaining an accurate user model that evolves with the system will
facilitate system design, interface design, and development of current training materials. Given
such a model, it is possible that updating portions of the training materials, such as the steps for
completing system tasks, can be mostly automated.

Understanding the commander’s interface requirements will be done using a combination

of task analysis techniques. Use cases will be developed to capture the overall system goals,
who will be using it, and how we expect it to be used. These use cases will change throughout
the project, but a common reference point is necessary for the development team. A Job
Analysis will be conducted for each of the user groups (e.g., commanders, platoon leaders,
controllers, etc.) to understand how the system will fit within the scope of their overall jobs. A
GOMS Analysis (Card, Moran, & Newell, 1983; Kieras, 1998) will also be conducted for the
user tasks that will be affected by the system, such as communication procedures.

The GOMS family of techniques is among the best developed engineering methods for

modeling human performance with computer systems (John & Kieras, 1996). The standard
GOMS model is based on a standard information-processing model of human performance and
the resulting models can be used to determine information requirements, functional coverage,
execution and learning time, and overall interface consistency. In addition, GOMS models can
be used to make qualitative predictions about where users will make errors (Wood, 1999). These
GOMS analyses will clarify which portions of the user tasks can best be enhanced by the system
and to what degree they will be improved. In addition, GOMS models provide an excellent
framework with which to build training materials and system documentation (Elkerton &
Palmiter, 1991) because they specify the procedural and declarative knowledge necessary to
perform the modeled task. This knowledge is organized in discrete procedures and all decisions
and any complex cognitive operations are clearly indicated.

 12

Phase I System Environment

The CIANC3 system integrates Soar-based interface agents into a combined simulation
and operational environment for robotic control. The agents communicate using the FIPA
protocol and a user interface to the agents was created using Tcl.

Integration Environment: Operator Control Unit / OneSAF TestBed

Bialczak, Nida, et al. (Science and Engineering Services, Inc., 2000) have designed and
implemented a dynamic composable Operator Control Unit (OCU) for the Mounted Maneuver
Battle Lab (MMBL) (now Unit of Action Maneuver Battle Lab, UAMBL) at Fort Knox,
Kentucky. Requirements for the OCU included that control of the unmanned vehicles had to be
dynamic (i.e., had to transition from one OCU to another without interrupting the exercise), and
that the OCU had to be composable – it had to control a heterogeneous set of robots. Most of all
the OCU had to be easy to use. Because of its inherent flexibility, they were also able to task
several real robotic vehicles from the OCU.

Because the OCU was to play an integral role in the exercises at the MMBL, the OneSAF

Test Bed Semi-Automated Forces (OTBSAF) simulation tool was chosen to provide a
foundation for the OCU over actual existing control units. This provided an interface to the
Distributed Interactive Simulation (DIS) network used at the MMBL. Creating different types of
unmanned vehicles including scout robots, main battle robots, missile robots, mortar robots,
rocket robots, mule robots, resupply robots, towing robots, mine-laying robots, counter-mine
robots, and all sizes of Rotary Wing Aircraft (RWA) and Fixed Wing Aircraft (FWA) entities in
the OCU was similar to creating other OTBSAF vehicles.

Many unmanned vehicle control interfaces are too complex to be useful on the battlefield.

To simplify the OCU, but still maintain flexibility, default parameters can be established at the
start of an exercise through a pop up window. To task a robot, the operator selects the
appropriate task and specifies its unknown parameters. For example, to give a Micro Air
Vehicle (MAV) a hover command, the operator selects hover from the list of tasks for that robot,
and clicks on the map to designate the MAVs orientation. The altitude of the hover task is set in
the default parameters window. If a change is necessary, the operator can manually pop up the
window to change the defaults. This simple but flexible tasking mechanism allows the soldier to
concentrate on the mission at hand instead of details on how to task the robots.

A key feature of the OCU is switching control of the unmanned platforms from one OCU

to another. This is required because an operator may want to relinquish control of some of his
unmanned vehicles for various reasons (perhaps a heavy fire-fight) or the OCU vehicle itself
could be destroyed. With two mouse clicks, the operator can send a Disconnect message to a
robot, then with a single mouse click an operator at another OCU can send a Connect message to
take control of that robot. If an operator attempts to control a vehicle that is already under
control, a warning message appears on both the OCUs. If an unmanned vehicle has not received
any messages from its OCU for a designated time, the robot sends an Uncontrolled message to
the nearest OCU with communication range. Any OCU within range can take control of the
robot.

 13

Another feature of the OCU is an adaptable fire control. Armed robots have active and
reactive fire control. The active fire control is dependent on the target’s acquisition level. A
human’s or agent’s knowledge about a target has several levels: detected (see something, but do
not know what it is), classify (it is tracked, wheeled, etc.), recognize (it is a tank, APC, etc.), and
identify (it is a T80, T72, etc.). Active fire control has all these levels plus a Fire on Order level
to provide a man-in-the-loop option. With the active fire control set at identify, the unmanned
vehicle will not shoot until it knows its target is a T72, for example. On the other hand with
active fire control set on detect, the robot will fire at any target it sees. Maintaining BLUFOR
situational awareness should prevent friendly fire. The reactive fire control is either hold fire or
return fire if fired upon. This fire control mechanism together with target images gives optimal
control of the unmanned vehicle’s armament to the soldier.

The OCU can receive images from smart and not-so-smart unmanned platforms. Some

robots have the ability to recognize possible targets. When a target is acquired, an icon appears
on the OCU map and an image is sent to the OCU. These images come in three formats, small
chip, large chip, and complete scene. The small chip contains the least amount of information.
It is cropped around the target, and some of the pixel data has been filtered out to reduce
transmission bandwidth requirements. It appears on the OCU with a prompt to request the large
chip or not. If the operator can distinguish the target from the small chip, the operator dismisses
the prompt– otherwise the robot sends the large chip. This chip contains more information, less
cropping is done, and more pixels are kept. Again, a prompt is given for the entire scene. If this
prompt is selected, the robot will send the original image to the OCU. At any phase of this
process, the operator can dismiss further images and if warranted, take action with armed
platforms. Some of the smaller unmanned air vehicles may not have the ability to identify
targets. Images from these vehicles are periodically updated on a screen next to the OCU. The
views from up to four unmanned air vehicles can be displayed at once. These realistic images of
the viewpoints from the robots make the simulation more believable for the soldiers at the OCU.

The OCU can also control real unmanned vehicles. Currently, the OCU is capable of

controlling a 350-pound electric driven wheeled robot, a 650-pound diesel powered tracked
robot, a 50-pound electric driven wheeled robot, and a 5-pound electric powered wheeled robot.
Several scenarios have been created with simulated and real robots from the OCU. One
consisted of the 50-pound robot being tasked from the OCU to recon a built up area in the
simulation. As the real robot moved across a parking lot, its icon on the OCU responded to its
movements around the town. A MAV was tasked to track the robot and an IG provided realistic
imagery from the unmanned air vehicle.

In summary, the OCU mixes the simulation functionality of OTB and the control

capability of a robotic control system. This combination makes the OCU uniquely qualified as a
platform on which to further develop the CIANC3 system.

Agent Environment: The Soar Cognitive Architecture

The Soar cognitive architecture is a powerful framework for creating multi-agent
systems. Soar has been used successfully to simulate complex human behaviors, the most
extensive of which is Tac-Air-Soar (Jones, et al., 1999). The interfaces we have developed for

 14

TacAir-Soar allow one or two operators to control more than 50 autonomous agents during
training exercises.

Soar is a common software architecture that has been used to model a wide range of

complex psychological behaviors (Rosenbloom, Laird, & Newell, 1993). It was originally used
to develop psychological models and intelligent systems that require specific problem-solving
methods from many different domains. The Soar architecture has since evolved to include
representations and methods for problem solving, planning, learning, and interacting in complex,
dynamic environments. Many of the design requirements that contributed to Soar were derived
from Newell and Simon's work on modeling human problem solving (Newell & Simon, 1972).
Based on initial successes in modeling human behavior, Newell proposed Soar as a candidate
“Unified Theory of Cognition” (Newell, 1990).

All Soar models share the same memory structure, task decomposition, task processing,

and learning structure. Different systems developed within Soar have successfully modeled a
wide variety of human behavior relevant to this research.

A key component of all Soar models is that all activity is cast as a succession of decisions

as to what to do next. The decisions are based on an internal representation of the current
situation, which is based upon realistic simulated sensors (such as simulated radar, visual, IFF,
RWR, FLIR, TVS, etc.).

Soar has been successfully used to model complex battlefield engagements in field

simulations. Soar was used to create synthetic agents for FWA, RWA, and related controllers.
For example, we have created Soar models of fighters and strikers that interact with Soar forward
air controllers during close-air support simulations. Similarly, for defensive-counter air (DCA)
missions, Soar-based fighters coordinate with a Soar-based Airborne Early Warning (AEW)
agent (currently in a simulated E-2C) that provides broadcast and close control support to
fighters. In all cases, human operators can also provide command and control to Soar agents.
This intervention is allowed but not required. Recent work has developed a model of ground
forces (Taylor, Koss, & Nielsen, 2001). The current project uses Soar to develop Intelligent
User Interface agents, leveraging Soar to support a rich and reactive human-like task
decomposition, but without being limited by human performance constraints.

Agent Communications: FIPA

Robotic forces must be able to communicate with each other in order to conduct joint
operations. An agent communication language (ACL) provides a common way for agents to
communicate. An effective ACL must enable interface agents to communicate between multiple
echelon hierarchies of both robotic and human forces. The Foundation for Intelligent Physical
Agents (FIPA) (Huhns & Singh, 1997) has defined an agent communication language that will
enable robotic forces to perform these types of communication. The FIPA standard also offers
several additional benefits. The FIPA ACL provides a formal semantics that allows interface
agents to deal with actions explicitly. This will enable robotic forces to make decisions,
maintain situation awareness, and share information more efficiently. By using a FIPA-based
ACL, robotic forces will be able to execute commands rapidly, and describe their actions

 15

precisely. Robotic forces will also be able to share awareness information about their current
situation, status, plans, and experiences. This will allow groups of robotic forces to coordinate
activity. The FIPA ACL also provides explicit support for secure communication. This will
make it more difficult for enemy forces to compromise robotic force communications.

User Interface Development: Tcl

Tcl is a leading scripting language supporting robust and rapid GUI development that can
easily be modified and ported across platforms. Tcl was selected for the Phase I interface
prototype due to its high quality and low integration cost. Interface prototypes are necessary for
both testing our design assumptions with real users (or other subject matter experts), and for
stress-testing the underlying technologies during system development. Soar Technology has
successfully created similar interfaces for controlling simulated semi-autonomous agents for
flight training within the TacAir-Soar system (Jones, et al., 1999). The resulting interfaces
allowed the migration from a system that required one human for every five vehicles to a system
where one to two people can control an entire exercise (forty or more vehicles). Similar to the
needs of the current project, the TacAir-Soar system required planning and control components
for air tasking orders, team assignments, and individual entity assignments.

Phase I Activities and Accomplishments

Under Phase I of this Small Business Innovative Research contract, we researched

methods for effectively controlling FCS units containing mixed human and robotic elements.
Our objective was to determine whether an agent framework built around three specified agent
types (Tasking, Coordinating, and Monitoring) could be constructed to add an intelligent
abstraction layer between human commanders and battlefield elements. The focus was to
identify human-system interaction issues, design potential solutions, and create software that
supports the commander’s tasks and mitigates inherent human performance limitations.

During the initial phase of this project we progressed in several areas. Major

accomplishments of Phase I included:

�� A working scenario was defined on which to determine project feasibility.
�� Architectural tradeoffs were discussed culminating in a working system and

communication architecture.
�� Necessary inter-agent communications protocols to perform the scenario were

designed.
�� Soar was integrated into the Operator Control Unit (OCU)/OneSAF TestBed (OTB)

code-base.
�� A Soar-language prototype multi-agent C3I support system was developed and tested.
�� A prototype user interface for the multi-agent system was designed and implemented.

 16

Conceptual FCS Vignette

We chose a simple scenario of a UAV acquiring a target for an unmanned shooter. This
scenario was then split into several stages and the responsibilities for individual entities were
identified. This scenario is illustrated in Figure 3.

1. Commander wants to attack enemy unit with non-line-of-sight (NLOS) weapon.
2. Commander selects unit and drags a path to the enemy unit.
3. Tasking agent interprets the gesture as an attack, completes 80% of an operation order

and queries the commander for the rest of the details.
4. Commander confirms the op order and tasking agent translates the order into a set of

smaller movement orders.
5. Tasking agent spawns a Monitoring agent that gets unit status every 5 minutes (or after

anomalous event) and updates commander's screen.
6. Monitoring agent informs commander that unit is ready to fire.
7. Commander approves, unit fires, sensor unit informs coordinating agent that enemy is

destroyed.

Figure 3. Phase I Scenario Narrative Map.

 17

Phase I Scenario

A scenario was created from the FCS vignette that:

�� Would exercise each of the candidate agent types,
�� Was simple enough to implement within the scope of the project, and
�� Was sufficiently complex so as to adequately explore the feasibility of the approach.

Briefly, the scenario involves an FCS commander targeting an enemy unit with a non-
line-of-sight (NLOS) unmanned ground vehicle (UGV). The tasking agent finds an available
unmanned aerial vehicle (UAV) capable of providing targeting information to the UGV at the
designated attack time. The UGV moves into position and notifies the UAV that it is ready to
fire. At this time the UAV paints (lases) the target, allowing the UGV to fire. Table 1 shows the
discrete phases in this scenario and describes the responsibilities of each of the involved entities.

Table 1
Scenario phases and entity responsibilities

Event/Agent Task Monitor Coord Entity/Robot
FIPA Init Register DF/AMS Register DF/AMS Register DF/AMS Register DF/AMS

FIPA Connect Search DF for "local"
Mon/Coord

Search DF for "local"
Task/Coord

Search DF for "local"
Task/Mon

Commander Needs
Attack (1)

Commander Designates
Attack (2)

Attack Order
Interpretation (3)

Interpret Order: auto-fills
slots, queries for Cmdr for
details, queries Coord for

immediately accessible
details

Fills in whatever details
it knows about at this

time from COP

Determine Resources (3) Find required entity
resources from Coord

agent

 Seeks entity resources:
Search DF for agents

e.g. w/ required sensors
that can be in required

area at required time
with necessary

munitions, etc. and
reply to Task agent

Confirm Order (4, 6) Translate order into
primitive behaviors

 Tasks UAV Committed
 Tasks NLOS Committed
 Tells Monitor to watch for

task-specific conditions
Sends out commands to

sensor entities and to
Coord agents to send it

info and under what
conditions

Receive monitoring
tasks and searches and
dispatches requests to

appropriate other
commander/TCMs (with

replies directly back to
Monitor)

Receives
monitoring tasks

 18
 Table Continues

Monitor Execution (5) Receives periodic
status, passes on to

Task, and informs and
presents current

operational picture to
Cmdr

 Sends periodic
status

 Receives events,
passes on to Task, and

informs and presents
current operational

picture to Cmdr

 Reports events

Prepared To Fire (7) Receives ready to fire NLOS: Reports
ready to fire

 Receives marking target UAV: Reports
marking target

FIRE! (8) Tells entity to pull
trigger

NLOS FIRES

Target Destroyed (8) Receives kill report UAV reports kill
 Informs Cmdr and Task

agent of success

List of Scenario Phases

(1) Commander wants to attack enemy unit with non-line-of-sight (NLOS) weapon.
(2) Commander selects unit and drags a path to the enemy unit.
(3) Tasking agent interprets the gesture as an attack, completes 80% of an operation order and queries the
commander for the rest of the details.

(4) Commander confirms the op order and tasking agent translates the order into a set of smaller movement
orders.

(5) Monitoring agent gets unit status every 5 minutes (or on anomalous event) and updates commander's
screen.

(6) Tasking agent knows that unit will require targeting info when it gets into range, so it contacts the
Coordinating agent which requests services of a sensor unit at time T. (OBE)

(7) Monitoring agent informs commander that unit is ready to fire.
(8) Commander approves, unit fires, sensor unit informs coordinating agent that enemy is destroyed.

System and Communication Architecture

Several system design architectures were examined to determine tradeoffs. It was
decided that the most flexible and extensible architecture would be beyond the scope of this
phase of the project. This architecture would entail discrete system components and a dedicated
communications infrastructure. It was determined that this portion of the design was merely a
matter of engineering and did not affect the feasibility questions being addressed. Instead, a
simpler architecture was proposed similar to Soar Technology’s prior work with JSAF, whereby
the Soar kernel is compiled with the OCU/OTB code-base. This simplifies the inter-agent
communications infrastructure and allows more time to be spent on agent design issues. The
following sections discuss these tradeoffs in more detail. Four options were considered and
Option III was selected for Phase I implementation. This architecture will be reevaluated for
Phase II. All four options are presented below.

 19

BATTLE

OPERATOR’S
GUI

Battle
Operator

FIPA-SOAR
INTERFACE

Coordinating
Agent

Monitoring
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

Tasking
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

FIPA

OCU Entity OCU Entity OCU Entity

Entity Agent

SOAR-OCU
INTERFACE

FIPA-SOAR
INTERFACE

Entity Agent

SOAR-OCU
INTERFACE

FIPA-SOAR
INTERFACE

Entity Agent

SOAR-OCU
INTERFACE

FIPA-SOAR
INTERFACE

• Features
• Soar agent types are:

Tasking, Coordinating,
Monitoring, Entity

• Pros
• Don’t need to build an

additional FIPA-OCU
interface component

• Cons
• Medium number of Soar

agent types required
• Reduces composability

with entity agent types
(taskframes, etc)

Figure 4. Phase I Design Option I.

Option 1 (Figure 4) would have had the advantage of being able to apply the type of

complex pro- and re-active cognitive modeling of Soar architecture agents to every entity in the
OCU. The disadvantage would be that much of the ability for the Tasking, Coordinating, and
Monitoring agents to engage in “plug and play” composability with low-fidelity agents would be
removed by virtue of having to implement a Soar agent wrapper around every new low-fidelity
entity.

 BATTLE
OPERATOR’S

GUI

Battle
Operator

FIPA-SOAR
INTERFACE

Coordinating
Agent

Monitoring
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

Tasking
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

FIPA

OCU EntityEntity Agent

S
O
A
R
-
O
C
U

I
N
T
E
R
F
A
C
EF

I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

OCU EntityEntity Agent

S
O
A
R
-
O
C
U

I
N
T
E
R
F
A
C
EF

I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

OCU EntityEntity Agent

S
O
A
R
-
O
C
U

I
N
T
E
R
F
A
C
EF

I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

Entity Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

• Features
• Soar agent types are:

Tasking, Coordinating,
Monitoring, Team, Entity

• Pros
• Don’t need to build an

additional FIPA-OCU
interface component

• Incorporates NCO cognate
as Team Agent in parallel
to C3 cognates of Tasking,
Coordinating, Monitoring

• Cons
• Largest number of Soar

agent types required
• Seriously reduces

composability with entity
agent types (taskframes,
etc)

Figure 5. Phase I Design Option II .

 20

Option II (Figure 5) was essentially a modification of Option I which was discussed that
would add another layer of coordination between the C3 agents and collections of entities
grouped as “Teams.” Each team would have a Team Agent essentially acting as the NCO and
mediating between the entities and the C3 agents (Tasking, Coordinating, Monitoring).
Although this option suffered from the same disadvantages as the first, the Team Agent was an
interesting addition.

Figure 6. Phase I Design Option III.

BATTLE
OPERATOR’S

GUI

Battle
Operator

FIPA-SOAR
INTERFACE

Coordinating
Agent

Monitoring
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

Tasking
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

FIPA

OCU Entity

FIPA-OCU
INTERFACE

OCU Entity

FIPA-OCU
INTERFACE

OCU Entity

FIPA-OCU
INTERFACE

• Features
• Soar agent types are:

Tasking, Coordinating,
Monitoring

• Selected as Phase I
design paradigm

• Pros
• Smallest number of Soar

agent types required
• Greatest degree of

composability with
entity agents
(taskframes)

• Cons
• Need to build an

additional FIPA-OCU
interface component

Option III (Figure 6) required the development of an interface between OCU entities and

the FIPA messaging layer in addition to the required interface between Soar agents and the FIPA
messaging layer, the preservation of relatively easy composability with arbitrary entity types was
deemed more than sufficient to outweigh that additional development cost. For that reason, this
option was deemed the best choice for the Phase I implementation.

 21

BATTLE
OPERATOR’S

GUI

Battle
Operator

FIPA-SOAR
INTERFACE

Coordinating
Agent

Monitoring
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

Tasking
Agent

F
I
P
A
-
S
O
A
R

I
N
T
E
R
F
A
C
E

FIPA

OCU Entity OCU Entity OCU Entity

Team Agent

SOAR-OCU
INTERFACE

FIPA-SOAR
INTERFACE

• Features
• Soar agent types are:

Tasking, Coordinating,
Monitoring, Team

• Pros
• Don’t need to build an

additional FIPA-OCU
interface component

• Incorporates NCO cognate
as Team Agent in parallel
to C3 cognates of Tasking,
Coordinating, Monitoring

• Team agent is sole point of
update for additional entity
types

• Cons
• Team agent needs to be

updated for any additional
entity types

Figure 7. Phase I Design Option IV.

Option IV (Figure 7), much like Option II, was essentially a modification of Option III

that would add another layer of coordination between the C3 agents and collections of entities
grouped as “Teams.” Each “Team” would have a Team Agent essentially acting as the NCO and
mediating between the entities and the C3 agents (Tasking, Coordinating, Monitoring).
Although this option offered potential merit above and beyond the design of Option III, the
relative advantages did not seem as though they could be cost-effectively presented in the Phase
I implementation.

Inter-Agent Communications for the Scenario

The inter-agent communications necessary to perform the scenario were diagramed fully
to more clearly delineate the roles and responsibilities of all the scenario entities. Figure 8
provides a sample portion of the communications diagram developed to illustrate the basic flow
of communications among scenario entities. This figure's intent is to provide the reader a
pictorial representation of the output format from the analysis. Output content for this sample
can be found in Appendix B.

The inter-agent communications necessary to perform the scenario were diagramed fully
to more clearly delineate the roles and responsibilities of all of the scenario entities. This was
translated into the UML (Unified Modeling Language) sequence diagram shown in Figure 8 and
presented in full in Appedix B. This form of diagram formalizes the timing and sequence of
events necessary for the agents to cooperate for the completion of the scenario task.

 22

Figure 8. Inter-agent communication partial diagram (See Appendix B for complete diagram)

Soar-OCU/OTB Integration

The Soar cognitive architecture has been successfully integrated with the OCU/OTB
code-base and Soar agents are currently able to see the status of OCU entities and send
commands to those entities. While there were minor technical difficulties during the integration
process, the system is currently quite stable and should provide a good platform for future work.
Considering that the OCU/OTB codebase is essentially itself a prototype, the integration went
quite well. With this portion of the project complete the stage was set to allow the interface
agents to send commands to and receive messages from the OCU entities.

Soar Prototype Agent

A Soar prototype agent was created to test the feasibility of the Soar agent to OCU entity
communication design and the overall system design. The complete functional path of the
system; task specification by the user through the user interface, task interpretation and
elaboration by the agent, and task performance by the OCU entities was tested successfully using
the scenario described earlier.

User Interface Prototype

A prototype user interface for the multi-agent system was designed and is shown in
Figures 9 and 10. The interface consists of a multi-tabbed pane that contains controls for
initiating, monitoring and reviewing the progress of the scenario task described earlier. This
interface is intended for initial testing purposes only and is not meant to represent a final user
interface design. Its main purpose is to allow rapid prototyping and testing of user interface
concepts associated with initiating, monitoring and reviewing the progress of the task. This
interface is used in conjunction with the main OTB/OCU interface, which already provides the
ability to override low-level commands, and provides a good picture of the current situational
awareness of the OCU entities.

 23

Figure 9. The Task Definition Pane of the user interface prototype.

Figure 9 displays the Task Definition pane of the prototype user interface. The top of this

pane contains fields for naming the task and selecting the task type. Currently the straw man
task is the only valid task type. The task naming fields will be used for task management
purposes in future tests involving multiple concurrent tasks. The central portion of this pane
contains the plan specification fields that must be filled for the mission along with available
optional parameters that may be specified by the user if desired. The “Generate Plan” buttons
allows the user to submit the plan request to the tasking agent. The plan created by the tasking
agent is then displayed along side the plan specification fields to allow the user to easily compare
the generated plan parameters with the requested plan parameters. Future versions of this
interface will also provide the user with explanations for any differences between the generated
and initially requested plans. These tasking plans extend the current capacity of the integrated
CIANC3-OCU system by providing the warfighter a limited degree of mission planning. Future
versions will extend the scope of mission planning available

 24

Figure 10. The Task Monitoring Pane of the user interface prototype.

The Task Monitoring Pane is shown in Figure 10. This pane is intended to provide the
user with a simple and easy to understand interface for determining the current status of the task.
It also provides facilities for the user to respond to queries from the agents (permission to fire,
etc.). The overall task status is displayed with an indicator that is visible no matter what pane is
currently being displayed in the user interface. This status indicator is located in the upper left
hand corner of the interface and uses colors and flashing to provide the user with status
information.

CIANC Agent Behavior in the NLOS Bombardment Mission

In Phase I we built a demonstration prototype of the CIANC system to perform the
scenario described earlier. This section details the behaviors and communications within the
system as it is performing the scenario.

When an agent is started, it is initialized with an agent type (Tasking, Monitoring,

Coordinating) that determines how it will apply its knowledge to the environment. A Tasking
agent will immediately request direction from the operator and wait for a response, while a
Monitoring agent will examine the environment to determine and report what the Common
Relevant Operational Picture (CROP) is.

 25

When the Tasking Agent has been communicated a mission definition by the operator, it
will request CROP details from the monitoring agent, including a report of available FCS vehicle
resources. From that list of available resources, the Tasking Agent will attempt to compose a
mission operational plan based on the requirements of the mission and the preferences of the
operator. Once the Tasking Agent has determined whether or not it is possible to compose a
functional mission plan, it will report to the operator. If sufficient information and resources
were available for the Tasking Agent to compose an operational plan, it will present the plan for
acceptance to the operator, otherwise, the Tasking Agent will indicate the deficient information
and/or resources to the operator.

If the operator communicates to the Tasking Agent that it can start the plan, the Tasking

Agent will direct its selected Spotter entity to begin proceeding to the defined contact area. The
Monitoring Agent will continue monitoring the status of selected entities and the environment,
reporting relevant changes to the Tasking and Coordinating Agents. The Coordinating Agent
will report to the Tasking Agent when mission-specific milestone synchronization events have
occurred, allowing the Tasking agent to further direct selected entities and report to or request
feedback from the operator.

When the Monitoring Agent reports to the Coordinating Agent that the selected Spotter

entity has detected targets according to the defined Rules of Engagement (ROE), the Tasking
Agent will direct the Spotter entity to halt and continue observation of the targets. The
Coordinating Agent, based on CROP reports from the Monitoring Agent, will then inform the
Tasking Agent that a mission milestone, the Spotter entity in position observing the targets, has
been achieved. If any CROP reports from the Monitoring Agent indicate that the pre-requisites
for that mission milestone are no longer met, such as the Monitoring Agent reporting that the
Spotter entity has lost sight of the targets, the Coordinating Agent will inform the Tasking Agent
of the change in mission milestone status. In the example of the Spotter entity losing sight of the
targets, the Tasking Agent will then direct the Spotter entity to re-acquire visual contact with the
targets.

As long as the Tasking Agent believes that the Spotter entity is in position and is

observing the targets, if the Monitoring Agent indicates that the Shooter entity is beyond indirect
fire weapon range of the targets, the Tasking Agent will command the Shooter entity to advance
towards the contact area until within indirect fire range of the targets.

Once the Monitoring Agent reports that the Shooter entity is within indirect fire range of

the targets and the Coordination Agent has not informed the Tasking Agent of any change in
milestone status, the Tasking Agent will direct the Shooter entity to halt in preparation for fire.
The Coordinating Agent, based on CROP reports from the Monitoring Agent, will then inform
the Tasking Agent that another mission milestone, a combination of the Shooter entity in firing
position and the continuing Spotter entity observation milestone, has been achieved.

The Tasking Agent will recognize these as the pre-requisites of the target designation

portion of the NLOS Bombardment mission and will request authorization from the operator to
begin actively designating the targets. The Tasking agent will wait until the operator replies with
an acceptance message or the situation otherwise changes. When the Tasking Agent receives

 26

operator authorization to designate the targets, it will direct the Spotter entity to begin target
designation. The Coordinating Agent, based on CROP reports from the Monitoring Agent, will
then inform the Tasking Agent that another mission milestone, both selected entities in position
and the Spotter entity designating the targets, has been achieved.

With the Coordinating Agent reporting the existence of the pre-requisites for the indirect

fire portion of the NLOS Bombardment mission, the Tasking Agent will request authorization
from the operator to begin firing upon the target position. The Tasking agent will wait until the
operator replies with an acceptance message or the situation otherwise changes. When the
Tasking Agent receives operator authorization to fire upon the targets, it will direct the Shooter
entity to begin bombardment of the target location as reported to the Monitoring Agent by the
Spotter entity.

The Monitoring Agent will continue to report the status of the targets as observed by the

Spotter entity. As long as the Tasking Agent believes that it has fire authorization from the
operator, that the Spotter entity is observing the targets, that the Shooter entity has remaining
ammunition, and the targets are not destroyed, it will direct the Shooter entity to fire short
barrages.

Once the Monitoring Agent reports to the Coordinating Agent that the Spotter entity has

observed the destruction of the targets, the Coordinating Agent will indicate to the Tasking
Agent that the final mission milestone has been achieved. When the final mission milestone is
achieved, the Tasking Agent will report this to the operator, who is then free to re-task the agents
and/or the individual entities.

Summary of Phase I Results

The agent and communication system designs were successfully implemented in a
simulation environment. A scenario was created to test the system using a simple combination
of a sensor-vehicle (UAV) and a shooter-vehicle (UGV). The UGV took the tasking to seek and
destroy a suspected enemy. The UGV tasked a UAV to locate and acquire the target. The UAV
located the target and transmitted the coordinates to the UGV, which then confirmed with the
human operator before firing on, and destroying the target.

The scenario was simple enough to test and demonstrate the capabilities of the interface-

agent architecture, but it was not complex enough to demonstrate any real utility to robotic
controllers. In addition, the Tasking agent accomplished most of the background work. A more
complex scenario would place more demands on the Coordinating and Monitoring agents,
driving their further elaboration.

The UML sequence diagram demonstrates how complex the agent communication

protocols need to be in order to perform even the simple scenario. Implementing a more
complex scenario will determine whether the sequence diagram is enough to simplify that
portion of the development or whether additional tools will be required.

 27

The performance of the Soar cognitive architecture was more than adequate for the agent
task in the simple scenario. However, implementing the agent behaviors was somewhat
complex, even with Soar. More research effort needs to be spent (outside of this project)
developing tools and techniques for rapid agent development. Research conducted in the next
phase of this project should help to better define the requirements for such tools. Related to this
is the large amount of declarative knowledge that needs to be encoded into the Soar agent
procedures. Representing such knowledge within production rules will inhibit scaling because
changes to that knowledge will necessitate time-consuming and expensive work. We should
explore an ontological approach to representing such knowledge to disentangle the behavioral
knowledge from the declarative knowledge.

Although FIPA provided a great foundation for developing the agent communication

infrastructure, it is not clear that it will meet the needs of military systems. For Phase II we will
consider using DARPA’s CoABS grid for the agent communication architecture.

In summary, Phase I successfully demonstrated the technical feasibility of interface

agents for robotic command and control. It also provided the necessary infrastructure and
techniques necessary to rapidly explore much more of the problem space.

Phase II

Phase II System Design

The purpose of this section is to provide a high level overview of the design of the
software infrastructure that will be built for Phase II of the CIANC3 project.

Infrastructure Design

 The Phase I CIANC3 infrastructure is built upon the Multi-functional Operator Control
Unit (OCU) software provided by Science and Engineering Services, Inc (which is in turn based
on OneSAF Testbed Baseline Version 1.0 (OTB). The OCU software was chosen as a basis for
this project (over OTB) mainly because it already provides the necessary simulated robotic
entities for the Soar meta-agents to manipulate. Use of the OCU software will continue in Phase
II.

Design Concept

The software infrastructure for the CIANC3 project can be broken down into three main
components: the Soar kernel, responsible for creating and managing the Soar meta-agents; the
OCU, responsible for creating and managing the OCU entities; and the Message Manager, which
is responsible for the messaging infrastructure between the various agents in the system. The
interactions between the Soar kernel, the OCU/OTB and the Message Manager will essentially
be limited to FIPA-ACL type messages except for a few interactions during process initialization
and agent directory querying.

 28

The Message Manager will act mainly as a message queue and a directory service for
facilitating communications between the various agents. The specifics of the message content
are described in another document. Here it is enough to say that these messages are the only
method by which information is passed between the components of the system. This approach
should help reduce unnecessary coupling between the various components while still providing
rich interactions between the various agents.

The Messaging Infrastructure

The Message Manager as implemented during the Phase I of the CIANC project was a
prototype closely tied to the implementation domain of the Phase I vignette. During Phase II, it is
our intention to enhance the Message Manager component of the software infrastructure to be
both general purpose and extensible. By enhancing the messaging capability to be both general
purpose and extensible, the process of adding new messages in the future and tying them to
existing agent behaviors could be done without requiring a behavior developer. This
parameterized approach significantly extends the composability of any behaviors created for the
tasking, coordinating and monitoring agents. Enhancement of the Message Manager component
of the software infrastructure will be obtained by standardizing the messaging software interface
between all agents and entities within the OCU and using an Agent Communication Language
(ACL) like the COABS Grid or FIPA.

Adoption of COABS formalisms for the composition of messages will allow us to encode

general message handling and message composition knowledge within the agents. Specific
message instances and their contents can then be parametrically associated with behaviors or sets
of behaviors, enabling the possibility of behavior composition by non-behavior developers.

Figure 11 shows in detail the execution sequence for a single messaging cycle. In a

single messaging cycle, the agent simply retrieves messages from his message queue using the
Retrieve Messages call and sends them using the Send Message call. The OTB scheduler calls
both the agents’ and OCU entities’ messaging loops indirectly through their main loop cycles.
The Soar agent’s main loop in turn calls the input and output phase callbacks, which are directly
responsible for handling the message sending and retrieving.

 29

MessageManagerSoar Agent OCUEntity

(scheduler calls agent
event and decision loop)

SendMessage()

SendMessage()

SendMessage()

RetrieveMessages()

(scheduler calls
OCU entity loop)

RetrieveMessages()

SendMessage()

SendMessage()

QueryAgentDirectory()Agent Input
Phase

Agent Output
Phase

Figure 11. Messaging sequence diagram.

A higher-level view of the messaging infrastructure, which concentrates on the

messaging necessary to maintain the agent database, is shown in Figure 12. Here the agents
register with the Message Manager/Directory database on creation and then provided periodic
status and capability updates to maintain the database information. A time stamp detailing the
time of the last update will be provided as part of any database query result. This should allow
the agents to gracefully handle situations where other agents or entities have been destroyed or
disconnected.

 30

MessageManagerSoar Agent OCUEntity

RegisterAgent()

RegisterAgent()

StatusUpdate()

UpdateCapabilities()

StatusUpdate()

StatusUpdate()

StatusUpdate()

StatusUpdate()

StatusUpdate()

StatusUpdate()

Agent Registration occurs
on Agent Creation

Periodic updates keep
database up to date

Last update time stamp will be
provided as part of the database query results

Figure 12. Agent registration and status messaging.

Multi-Agent Design

Following are design requirements for each of the agent types, where each listed item
describes a single feature/requirement. Some listed features will require interaction with other
agents; these are shown in brackets.

Tasking Agent (TA). Task agents assist commanders and controllers to rapidly issue

battlefield commands.

�� Present commander with reasonable operation plan.
�� Engage commander in clarification dialog.
�� Present options to commander.
�� Translate order into proper command sequences for next command layer.
�� Autonomously gather information to support Op Order completion [Coordination,

Monitoring].
�� Dispatch and execute Op Order [Coordination, Monitoring].
�� Task UAVs [Coordination, Monitoring].

 31

�� Autonomously gather information to maintain situational awareness [Coordination,
Monitoring].

�� Autonomously modify tasking [Coordination, Monitoring].

Coordinating Agent (CA). Coordinating agents are responsible for facilitating
communication and coordination across and within echelons within the command hierarchy.

�� Develop and maintain representation of available and currently interacting command
elements [Monitoring].

�� Determine low-level communication attributes such as radio frequency, call signs, unit
designations, chain-of-command, IFF and communications security [Monitoring].

�� Develop and maintain representation of common operational picture with regard to
current situation, plans, enemy intentions, and BDA. [Monitoring].

�� Coordinate with higher, lower, and nearby peer command elements to react quickly to
changing situations, reduce duplication of effort, maximize target coverage, synchronize
attacks, and massing fire [Monitoring].

�� Present current operational picture to commander (OBE).
�� Set up direct sensor to shoot communications across commands.
�� Set up indirect fire cross-command communications.
�� Facilitate teleconferencing.
�� Reestablish broken communications [Tasking, Monitoring].
�� Integrate orphaned units [Monitoring].
�� Share incomplete sensor information to upper echelons.
�� Decompose and disseminate Op Orders to lower echelons.

Monitoring Agent (MA). Monitoring agents are responsible for assisting the commander

in maintaining an accurate awareness of the current situation at all times.

�� Assist commander in maintaining accurate awareness of the current situation
[Coordinating].

�� Fuse, filter, and prioritize raw data.
�� Transform data into contextually relevant information [Tasking].
�� Autonomously gather information to maintain common operating picture [Tasking,

Coordinating].
�� Present current/common operational picture to commander.
�� Collect and present all messages related to a particular unit to help build a broader picture

from single events [Coordinating].
�� Represent visually direct communication lines between shooters and sensors [Tasking].
�� Monitoring health and stress levels of human subordinates.

Phase II Work Plan

This project will address the robotic command-and-control needs by developing a
framework and toolkit for constructing intelligent user interface elements to enhance
commander-team control and interaction. These user interface elements will allow battlefield

 32

commanders to efficiently control autonomous teams of robotic or human elements by
anticipating commander intent and reducing substantially the amount of information the
commander must specify to communicate that intent. It will also support the integration of other
intelligent and autonomous decision-support tools and information systems without increasing
the commander’s overall mental workload.

There are three main research & development areas in the Phase II workplan; human-

system interaction, agent & architecture research, and system development. The toolkit will
consist of extensible software agents for tasking, monitoring, and coordination, driven by a
direct-manipulation user-interface. An initial task analysis of the command and control problem
will be used to identify the critical cognitive workload factors. This will motivate the assignment
of appropriate human control functions to software agents and will help determine the
requirements for the human interface. A suite of software agents will be developed using the
Soar cognitive architecture. These agents will communicate using the Foundation for Intelligent
Physical Agents (FIPA) communication protocol and will be controlled using a JAVA -based,
direct-manipulation interface. The initial system will be integrated into the OCU-enhanced OTB
battlefield simulation system created by TSA and tested with a representative FCS-company
scale ground-force task. The following sections describe the tasks that will be accomplished in
Phase II.

Research HSI, Scenarios, Behaviors

A variety of methods will be used for assessing the knowledge, skills, and abilities
required by a commander to use the system successfully, including observation of commander
performance during an FCS C2 exercise and hierarchical task modeling of CIANC3 and OCU
usage. In addition, we will work with subject matter experts to help develop realistic scenarios
and to better understand the challenges that will be faced by future FCS commanders.

Develop GUI

Based on the results gathered from the HSI research, an easy-to-use GUI will be designed
and built to facilitate communication and interaction between human and software agents in the
system. The Phase II GUI will be based on the GUI prototype developed for Phase I but will be
more tightly integrated with the OCU, including using highlighting active entity locations, and
using the OCU map as a sketchpad to sketch rough plans. In addition, the Phase I prototype
focused on single missions. The Phase II GUI will be extended to support multiple concurrent
missions. While the Phase I GUI prototype was implemented in TCL, the Phase II interface will
be developed in JAVA.

JAVA supports robust, object oriented GUI development and is the native language of

the CoABS Grid. User interface elements were created with JAVA using tools and techniques
previously developed at Soar Technology. For example, the Communications Panel (Jones,
1998) is a human interface element for communicating with Soar agents operating in the JSAF
(Joint Semi-Automated Forces) environment. Similarly, the Situation Awareness Panel (SAP)
(Jones, 1999) also communicates with JSAF, allowing users to inspect the reasoning process of

 33

autonomous pilot agents. The information from the SAP is used to aid observation, use and
development of TacAir-Soar intelligent agents.

Design and Conduct System and Human Tests

To determine the efficacy of the approach, it is imperative that the system be tested.
These tests could take the form of small-scale individual usability tests at UAMBL or ARI,
actual use of the prototype at UAMBL, or a full-scale comparison of company-level training
pitting a CIANC3 enhanced FCS-company against a conventional company. In any case, this
phase of the project will be dedicated to the testing design and performance testing of the overall
system.

Develop Testing Environment

We will develop techniques for instrumenting the OCU environment to capture accurate
millisecond-level human-subject data. This will be used to help evaluate overall system usability
and the CIANC3 system’s effect on operator performance, cognitive workload, propensity for
error, and affect.

Figure 13. Experimental Environment.

 34

Research Agent Architecture and Communications

We will be developing flexible, declarative analytic interaction models supporting
semantically rich analysis processes and human interactions. Interactions will be analyzed for
commander’s intent and a semantically rich interaction protocol representation optimized to the
operational processes will be designed. The result will be a novel approach that tightly integrates
message semantics to agent communicative acts and conversation protocols.

Develop Agent Architecture and Communications

Multi-agent organization and deontics research – Analyze organizational features of the
system with respect to traditional military roles and more flexible, dynamic, and transient agent
teams and adopt/develop appropriate representation and reasoning paradigm. Deontic aspects of
obligations, authority, permissions, restrictions, etc. will need to be considered when performing
tasks in view of the current and expected organizational structure as well as when planning
outgoing communications and responding to incoming messages.

System Development and Integration

Although a minimal software interface was developed for Phase I to integrate the multi-
agent system into OCU/OTB, further development will more seamlessly integrate the
functionality of the OCU and the CIANC3 prototype allowing for higher fidelity and more
realistic experimentation.

Develop Agent Behaviors

Develop representations and an introspection scheme by which agents can determine an
autonomy level appropriate to the current tasks and situation. Agents would adjust how
proactive or passive they are with respect to goals from human operators and other agents and
how independent they are with respect to other modalities such as beliefs and capabilities.
Deontic, organizational, and communication aspects all will potentially impact upon an agent's
autonomy level.

Phase III Transitional Plan

This work will provide a technical and theoretical framework with which to further
explore interface agents for a variety of command and control tasks. It will demonstrate the
power of reasoning systems for user interface development and it will represent the state of the
art in interface agent technology.

Phase III Commercialization Strategy

Soar Technology, Inc.’s mission is to create and apply cognitive, knowledge-rich,
dynamic systems to fundamentally improve how people work and live. Using multiple artificial
intelligence (AI) disciplines, our expertise is in R&D for intelligent autonomous agents, control
interfaces, information visualization, advanced human behavior and error-modeling technology.

 35

Our core team developed TacAirSoar, the largest and highest fidelity expert system deployed in
military simulation, with a suite of agent and exercise management tools. With one of the
strongest concentrations of expertise and experience in the field of military AI, we are at the high
end of human behavior representation for military simulation. We are now using the expertise
and insights gained in simulation and multi-agent interaction to move into new domains of
knowledge management, decision-making and control. The work being undertaken under Phase
I, and proposed for Phase II, leverages past, current and prospective work, as our technology
evolves.

Though less than five years old, Soar Technology has successfully grown its R&D

engineering and consulting revenue at an average rate of 100% per year, commercializing its
artificial intelligence and human-computer interaction expertise through contracts for DARPA,
Army, Navy, JFCOM, ONR, AFRL, ARI and the intelligence community, and with Lockheed
Martin, Raytheon, L-3 Comm, Veridian, IITRI, IDA, MSIAC, and others.

If successful, the technical and theoretical accomplishments produced by this CIANC3

project could be essential for successfully implementing the Army’s FCS force transformation
vision because they would enable the multiplier effects necessary for optimal control of robotic
teams. In terms of immediate markets, FCS command and control programs will thus be the
primary commercial opportunities. During Phase II, discussions will be initiated with the
objective of integrating this technology into FCS candidate systems under licensing agreements.
In addition, through other potential work with DARPA (for example, the Unmanned Combat
Armed Rotorcraft (UCAR) program, or the Mixed Initiative Control of Automa-Teams (MICA)
research program), the Army and STRICOM, we can leverage and integrate the technology
developed in Phase II for the C2 requirements of FCS. In addition to the FCS, many other future
unmanned systems will require similar command and control capability. With Congress’ goal
that within 10 years, one-third of DOD’s deep-strike aircraft will be UAV systems, and within 15
years, one-third of all ground combat vehicles will be unmanned, significant acquisition
programs will be underway. Soar Technology is monitoring the participants in this market
sector, attending conferences, making presentations to government customers, and fielding
inquiries from other technology companies who have inquired about Soar Technology’s expert
system and intelligent agents and interface technology.

In addition, the interface agent system developed for this project can have applications in

other domains with similar command and control requirements. For situations such as natural
disasters, riot control, event or personal security and terrorist attacks where tight coordination of
multiple cooperating teams is crucial, crisis management is a key domain in which CIANC3
technology can provide enhanced performance. Other domains include factory control and
automation, mass transit management and emergency room management.

To successfully commercialize the results of this proposed research, during Phase II Soar

Technology will invest business development effort in three parallel paths: (1) integration into
the FCS, (2) other military systems requiring C2 for multiple arrays of robotic entities, and (3)
commercial markets. The timeline for these activities is projected below.

 36

For ultimate system integration and fielded applications, both military and commercial,
our general strategy is to team, via licensing or joint venture partnerships, with larger companies
that have deep domain knowledge, marketing, manufacturing and support capability. While Soar
Technology’s management has considerable experience in generating business, marketing and
finance plans, it is our strategy to offer a unique, key part of the technology solution, not a full
vertical market solution. In terms of revenue from commercialization, we anticipate a
combination of development funding during system development, royalties from procurement,
and software and behavior maintenance/upgrade/support contracts after systems are fielded.

 37

 38

References

Birmingham, W. P., D'Ambrosio, J. G., Darr, T., & Durfee, E. H. (1994). Coordinating decision

making in large organizations. Working Notes of the AAAI Spring Symposium on
Computational Organization Design.

Bradshaw, J. M., Dutfield, S., Benoit, P., & Wooley, J. D. (1997). KAoS: Toward an industrial-

strength open distributed agent architecture. In J. M. Bradshaw (Ed.), Software Agents:
AAAI/MIT.

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer

Interaction. Hillsdale, NJ: Lawrence Erlbaum.

Cohen, P. R., & Levesque, H. J. (1990). Performatives in a rationally based Speech Act theory.

Paper presented at the 28th Annual Meeting of the Association for Computational
Linguistics.

Corkill, D. D. (1982). A framework for organizational self-design in distributed problem solving

networks. Unpublished doctoral dissertation, University of Massachusetts, Amherst.

Defense Advanced Research Projects Agency. (2000). DARPATech 2000 Symposium, Dallas,

TX.

Defense Advanced Research Projects Agency. (2001). Future Combat Systems Solicitation.

DARPA. Available: http://www.darpa.mil/fcs/Solicit.html [July, 2001].

Defense Advanced Research Projects Agency BAA#01-029. (2001). Mixed Initiative Control of

Automa-teams (MICA) solicitation. Available: http://dtsn.darpa.mil/ixo/mica%2Easp

Decker, K., & Lesser, V. (June, 1995). Designing a family of coordination mechanisms. Paper

presented at the First International Conference on Multi-Agent Systems (ICMAS-95).

Durfee, E. H., Kenny, P. G., & Kluge, K. C. (1998). Integrated permission planning and

execution for unmanned ground vehicles. Autonomous Robots, 5, 97-110.

Elkerton, J, & Palmiter, S. (1991). Designing help using a GOMS model: An Information

Retrieval evaluation. Human Factors 33(2), 185-204.

Ferguson, I. A. (1992). Touring Machines: An architecture for dynamic, rational mobile agents.

Unpublished doctoral dissertation, University of Cambridge, Cambridge, UK.

Foundation for Intelligent Physical Agents. (2000). FIPA ACL Specification, [Web Document].

FIPA. Available: http://www.fipa.org [2000].

Fox, M. (1979). Organization structuring: Designing large complex software, (Tech. Rep. No.

9-155). Pittsburgh, PA: Carnegie-Mellon University, School of Computer Science.

 39

Fox, M. S. (1988). An organizational view of distributed systems. IEEE Transactions on
Systems, Man and Cybernetics, 11(1), 70-80.

Gasser, L., & Hill, R. W. (1990). Engineering Coordinated Problem Solvers (Vol. 4). Palo

Alto, CA: Annual Reviews, Inc.

Gat, E. (1992). Integrating planning and acting in a heterogeneous asynchronous architecture

for controlling real-world mobile robots. Paper presented at the Tenth national
Conference on Artificial Intelligence, San Jose, CA.

Gray, R. S., Kotz, D., Cybenko, G., & Rus, D. (1997). Agent Tcl. In W. Cockayne & M. Zyda

(Eds.), Mobile Agents: Greenwich, CT: Manning Publishing.

Huber, M. J. (1999). JAM: A BDI-theoretic Mobile Agent Architecture. In Proceedings of the

Third International Conference on Autonomous Agents (Agents99), (pp. 236-243).
Seattle, WA.

Huhns, M. N., & Singh, M. P. (1997). Agents and Multiagent Systems: Themes, Approaches,

and Challenges, Readings in Agents (pp. 1-23). San Francisco, CA: Morgan Kaufmann
Publishers, Inc.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques:

Comparison and contrast. ACM Transactions on Computer-Human Interactions, 3(4),
320 - 352.

Jones, R. (1998). A graphical user interface for human control of intelligent synthetic forces. In

Proceedings of the Seventh Conference on Computer Generated Forces and Behavioral
Representation, (pp. 631-635). Orlando, FL.

Jones, R.M. (1999). Graphical visualization of situational awareness and mental state for

intelligent computer-generated forces. In Proceedings of the Eighth Annual Conference
on Computer Generated Forces and Behavioral Representation. Orlando, Florida.

Jones, R.M. Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999).

Automated intelligent pilots for combat flight simulation. AI Magazine. Spring, 1999.

Kieras, D. E. (1998). A guide to GOMS model usability evaluation using GOMSL and GLEAN3

(Technical Report No. 38, TR-98/ARPA-2). Ann Arbor: University of Michigan.

Kirwan, B., & Ainsworth, L. K. (1992). A guide to task analysis. London: Taylor & Francis.

Kumar, S., & Cohen, P. (2000). Towards a fault-tolerant multi-agent system architecture. In

Proceedings of the fourth international conference on autonomous agents, (pp. 459-
466). New York, NY: Association for Computing Machinery Press.

 40

Kumar, S., Cohen, P., & McGee, D. (2001). Towards a formalism for conversation protocols
using joint intention theory. Computational Intelligence Journal (Special Issue on Agent
Communication Languages), vol 18, no 2. 174-228.

Labrou, Y. (1996). Semantics for an Agent Communication Language. Unpublished doctoral

dissertation, University of Maryland Baltimore County, Baltimore.

Labrou, Y., & Finin, T. (1997). Semantics and conversations for an agent communication

language. In Hunhs, M and Sign, M. (Eds.), Readings in Agents, New York, NY:
Morgan Kaufmann,

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general

intelligence. Artificial Intelligence, 33, 1-64.

Laurel, B. (1991). Interface Agents: Metaphors with Character. In B. Laurel (Ed.) The Art of

Human-Computer Interface Design, (pp. 347-354). Reading, MA: Addison-Wesley
Publishing Company, Inc.

Leveson, N. G. (1995). Safeware: system safety and computers. Reading, MA: Addison-

Wesley.

Lieberman, H. (1997). Autonomous Interface Agents. In Proceedings of the ACM Conference

on Computers and Human Interaction [CHI-97], Atlanta, March 1997: ACM Press.

Maes, P. (1994). Agents that reduce work and information overload. Communication of the

ACM, 37(7), 30-40.

Muller, J. P., & Pischel, M. (1994). Integrating agent interaction into a planner-reactor

architecture. Paper presented at the 1994 Distributed AI Workshop, Lake Quinalt, WA.

Newell, A. (1990). Unified Theories of Cognition: Harvard University Press.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice

Hall.

Peine, H. & Stolpmann, T. (1997). The architecture of the Ara platform for mobile agents. In

Kurt Rothermel, Radu Popescu-Zeletin (Eds.): In Proceedings of the First International
Workshop on Mobile Agents MA'97 (Berlin, Germany), April 7-8th. Lecture Notes in
Computer Science No. 1219, Springer Verlag, ISBN 3-540-62803-7.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.). (1993). The Soar Papers: Research in

Integrated Intelligence. Cambridge, MA: The MIT Press.

Rosenschein, J. (1985). Rational Interaction: Cooperation among Intelligent Agents., Stanford

University, Palo Alto, CA.

 41

Science and Engineering Services, Inc. (2000). Multi-Functional Operator Control Unit, (U.S.
Army Armor Center and School Contract DABT-23-00-D-1035) Radcliff, KY.

Searle, J. (1970). Speech Acts: An Essay in the Philosophy of Language. Cambridge, MA:

Cambridge University Press.

Sheridan, T. B. (2000). Function allocation: Algorithm, alchemy, or apostasy? International

Journal of Human-Computer Studies, 52, 203-216.

Shneiderman, B., & Maes, P. (1997). Direct manipulation vs. interface agents. Interactions, 42-

61.

Shoham, Y. (1991). AGENTO: A Simple Agent Language and Its Interpreter. Paper presented

at the Ninth National Conference on Artificial Intelligence, Anaheim, CA.

Shoham, Y. (1993). Agent-oriented Programming. Artificial Intelligence, 60(1), 51-92.

So, Y., & Durfee, E. H. (March, 1994). Modeling and Designing Computational Organizations.

Paper presented at the Working Notes of the AAI Spring Symposium on computational
Organization Design.

So, Y., & Durfee, E. H. (1997). Designing organizations for computational agents. In K. Carley,

L. Gasser, & M. Prietula (Eds.), Computational Organization Theory: AAAI Press.

Taylor, G., Koss, F., Nielsen, P. (2001). Special operation forces IFORs. Proceedings of the

Tenth Conference on Computer Generated Forces. May, 2001.

Thomas, R. S. (1995). The PLACA agent programming language. In M. Wooldridge & N. R.

Jennings (Eds.), Intelligent Agents - Theories, Architectures, and Languages, (pp. 356-
370): Springer.

Van Fosson, M. H. (2001). Future Combat Systems, [Presentation]. DARPA. Available:

http://www.darpa.mil/DARPATech2000/Presentations/tto_pdf/3VanFossonFCSB&W
.pdf [2001]

Wood, S. D. (1999). The application of GOMS to error-tolerant design. In Proceedings of the
17th International System Safety Conference, Orlando, FL.

Wooldridge, M. (2000). Reasoning About Rational Agents. Cambridge, MA: MIT Press.

 42

Appendix A

Agent Message Types
Message Types

- Confirm

�� Sent By: Operator, Tasking Agent
�� Received By: Operator, Tasking Agent
�� Description: This type of message is either a request for confirmation, a confirmation, or

a rejection of confirmation, depending on the Status parameter.

- Uninitialized
�� Sent By: Tasking Agent
�� Received By: Operator
�� Description: This type of message is a mission milestone status update to the operator.

- In-Progress
�� Sent By: Tasking Agent, Monitoring Agent
�� Received By: Operator, Tasking Agent, Coordinating Agent
�� Description: This type of message is a mission milestone status update.

- Failed
�� Sent By: Tasking Agent, Monitoring Agent
�� Received By: Operator, Tasking Agent, Coordinating Agent
�� Description: This type of message is a mission milestone status update.

- Complete
�� Sent By: Tasking Agent, Monitoring Agent
�� Received By: Operator, Tasking Agent, Coordinating Agent
�� Description: This type of message is a mission milestone status update.

- In-Jeopardy
�� Sent By: Tasking Agent, Coordinating Agent, Monitoring Agent
�� Received By: Operator, Tasking Agent, Coordinating Agent
�� Description: This type of message is a mission milestone status update.

- Request
�� Sent By: Tasking Agent, Coordinating Agent, Monitoring Agent
�� Received By: Operator, Tasking Agent, Coordinating Agent, Monitoring Agent
�� Description: This type of message is a request for a specific type of information from

one agent type to another agent type or the operator.

- Report
�� Sent By: Tasking Agent, Coordinating Agent, Monitoring Agent
�� Received By: Tasking Agent, Coordinating Agent, Monitoring Agent

 A-1

�� Description: This type of message is a report on a specific type of information from one
agent type to another agent type or the operator.

- Move

�� Sent By: Operator, Tasking Agent
�� Received By: Entity
�� Description: This type of message is a movement order for an entity to a specific set of

coordinates at a specified speed.

- Fire

�� Sent By: Tasking Agent
�� Received By: Entity
�� Description: This type of message is a direct or indirect fire order for an entity to a

specific set of coordinates or target.

- Set-ROE
�� Sent By: Operator, Tasking Agent
�� Received By: Entity
�� Description: This type of message sets the Rules of Engagement for an entity.

- Halt
�� Sent By: Operator, Tasking Agent
�� Received By: Entity
�� Description: This type of message is a movement order for an entity to halt immediately.

- Initiate

�� Sent By: Operator
�� Received By: Tasking Agent
�� Description: This type of message is a command by the Operator to a Tasking Agent

initiating a proposed plan.

- Update
�� Sent By: Operator
�� Received By: Tasking Agent
�� Description: This type of message is a command by the Operator to a Tasking Agent

updating a plan already in the process of being executed.

- Terminate
�� Sent By: Operator
�� Received By: Tasking Agent
�� Description: This type of message is a command by the Operator to a Tasking Agent

terminating a plan in the process of being executed.

 A-2

Example Message Content
 To: [Operator|Tasker|Coordinator|Monitor|<Entity Callsign>]
 From: [Operator|Tasker|Coordinator|Monitor|<Entity Callsign>]
 Subject: [<Message Type>]
 <Data Member Attribute1>: [<Data Member Attribute-Value1>]
 <Data Member Attribute2>: [<Data Member Attribute-Value2>]

Example Message
 To: Tasker
 From: Operator
 Subject: Confirm-Fire-Order
 Status: Confirmed

 A-3

A-4

Appendix B

Agent Communications UML Sequence Diagram

B-1

	Technical Report 1134
	
	
	Cooperative Interface Agents for Networked Comman
	
	Scott D. Wood

	April 2003
	Approved for public release; distribution is unlimited

	U.S. Army Research Institute
	for the Behavioral and Social Sciences
	A Directorate of the U.S. Total Army Personnel Command
	ZITA M. SIMUTIS
	Research accomplished under contract
	Technical Review by
	NOTICES

	Robotic Battlefield Entities
	User Interface Prototype
	CIANC Agent Behavior in the NLOS Bombardment Mission
	Design Concept

